
Rajesh Menon, 01/11/22

Course Overview
ECE 5960 / 6960 Computational Photography

Project-based
course
Lots of independent work
with teams.
Build hardware (camera).
Build software.

Learn by doing.

Logistics

• Where: Zoom & in lab, MEB 1541 (select dates).

• When: Tue/Thur 12:30-1:30pm MT

• Zoom: invitations sent via canvas.

• Office hours: Wednesdays 7-8pm MT (but flexible, by appt.).

• Slack: all discussions, ask questions, collaborations, Invitations to be sent via
email. [quick demo]

• All class notes, software, online resources to be provided. No textbook
required.

Learning objectives

• Understand fundamentals of computational imaging.

• Innovate to create new types of cameras (team projects).

• Write a technical journal article & submit for peer review.

• Present your technical article.

• Create open-source software & submit to GitHub.

Topics of interest
• Design of imaging systems.

• Design of computational post processing (linear algebra, machine learning, etc.)

• Human-centric images - how does computation help?

• Machine-centric images - how does computation help?

• What are the fundamental limits?

• Imaging in the visible and infra-red bands.

• Imaging from space.

• Biomedical imaging.

• Imaging for autonomous driving.

• Imaging for biometrics

• … Your interests…

Grading

• Assignments: 30%

• Team presentations: 35%

• Final technical paper (one per team & includes GitHub submission): 35%

Course website: (link)

• All announcements will be posted here. These may not be mirrored on
canvas, so please bookmark this.

• Most lectures will be recorded and posted here.

• All course material will be posted here (online content & software).

• Review schedule (tentative, small changes might happen).

Assignments
1. [01/18] Choose team & topic

2. [01/25] Select & order image sensors, optics, relevant hardware.

3. [02/03] Complete simulation model of your system. Submit report.

4. [02/17] Submit 1st version of software tools to GitHub.

5. [03/03] Present 1st experimental results from your camera.

6. [03/17] Complete 1st draft of your technical paper.

7. [03/31] Submit 2nd version of software tools (include ML data as appropriate) to GitHub.

8. [04/14] Submit technical paper for peer review & submit final software (and all data) to Github.

9. [04/21] Final presentation of results.

Journals for peer review

• At least at the quality of IEEE journals.

• Examples are:

• Optics Letters

• Optics Express

• APL Photonics, etc.

• All of these have overleaf (Latex) & word templates. Please use them.

Open source software & data availability

• All data you collect should be uploaded for free availability on GitHub.

• All software should be made open source & freely available on Github.

• Exceptions possible if you want to patent or restrict usage. Let me know.

Introductions & interests

• What do you want to get out of this course?

• What are your skill sets ?

• Feel free to discuss any passion projects (if you have any).

Why does a camera need optics?

Scene

Each point in a scene reflects (or emits) light

If we have no optics & just record light on a
sensor, light from all points get mixed together

& no image is formed!

sensor

140 The refresh rate of the LED array is 16 Hz. We used frame
141 averaging to eliminate the effect of this refresh rate as well
142 as to enhance the signal-to-noise ratio of the raw data.
143 As the first step, we experimentally calibrated the imaging
144 system by recording the image of each LED in the array, form-
145 ing what we refer to as the calibration matrix A. The size of
146 matrix A is 307200 by 1024. The 1st dimension represents
147 the sensor pixels (480 × 640), and the 2 nd dimension repre-
148 sents the point sources (32 × 32). One hundred frames were
149 averaged for each LED. Exemplary frames (elements of matrix
150 A) are shown in Fig. 1(b). Extraneous light was minimized dur-
151 ing all experiments. When an arbitrary pattern is displayed on
152 the LED matrix, the resulting sensor image is a linear combi-
153 nation of the images formed by the individual LEDs (elements
154 of the calibration matrix A). Since our LED matrix has green
155 LEDs, we used only the green channel in our experiments. But
156 our technique is easily extended to all colors. Note that the ex-
157 posure time was chosen between 10 ms and 100 ms to ensure
158 that the sensor pixels were not saturated. For each image, 100
159 frames were averaged. Examples of the raw sensor image and
160 the reconstructed image are shown in Fig. 1(c), where the ob-
161 ject is the letter “T.” More interesting objects are illustrated in
162 Fig. 2, where the first column shows the photographs of the
163 LED matrix using a conventional camera, the second column
164 shows the raw sensor images, and the third and fourth columns
165 show the reconstructed images before and after thresholding.
166 Using this same technique, we can perform video imaging as
167 well, as illustrated by an example video of a jumping stick-man
168 included as Visualization 1. Frame rate of this video is 0.4 FPS,
169 which could be improved by using a higher SNR sensor and
170 thereby minimizing frame averaging. The reconstruction proc-
171 ess, including all necessary image processing, takes less than
172 10 ms per frame using a regular desktop PC (Intel Core i7-
173 4790, 32 GB memory). In our current implementation, the

174frame rate was limited by our averaging of 100 frames, which
175takes 1 to 10 s.
176As expected from the geometry of the system, the distance
177between the object and the sensor, D, is a key parameter. If D is
178too small, then the field of view is expected to decrease because
179of loss of light (and, hence, loss of information) from the off-
180axis points in the object. At the same time, if D is too large,
181then there is loss of light (and, hence, loss of information) due
182to the sensor intercepting only a small fraction of the emitted
183light from each point on the object. As a result, one expects an
184optimal value of D for imaging. We determined this empirically
185by analyzing the performance of the sensor at D ! 85 mm,
186165 mm, 242 mm, 343 mm, and 497 mm. For each value
187of D, we obtained the matrix A, calculated its singular values,
188and also reconstructed a sample object (stickman), as summa-
189rized in Fig. 3(a). For each D, we also estimated the field of
190view by monitoring the extent of one PSF on the sensor plane.
191However, we used all the calibrated PSFs for reconstruction.
192We noticed that restricting the contributing points to within
193the field of view did not impact the final images. We were able
194to successfully recover objects with up to 32 LEDs in the hori-
195zontal direction and 30 LEDs in the vertical direction. The
196mounting platform blocked the bottom two rows of the LED
197matrix, which creates the discrepancy between the vertical
198and horizontal directions. Enhancement in field of view was
199observed as a function of increasing distance (see Appendix B).

Sensor Image
(640 x 480 pixels)

Object
(32 x 32 LEDs)

Reconstructed Image Reconstructed Image
After Thresholding

F2:1 Fig. 2. Exemplary images taken with the sensor. The left column
F2:2 shows the objects displayed on the LED matrix. The second column
F2:3 shows the raw sensor images. The third column shows the recon-
F2:4 structed images before any processing. The right column shows the
F2:5 reconstructed images after binary thresholding. Video of stickman
F2:6 is included as Visualization 1.

F3:1Fig. 3. Impact of object distance. (a) Reconstructed images obtained
F3:2at various distances, D. (c) Length of a line object imaged at various
F3:3distances, D, in the horizontal, vertical, and diagonal directions. Insets
F3:4show reconstructed images of diagonal lines captured at the D ! 85,
F3:5162, and 242 mm. (d) Singular-value-decay plot of the calibration
F3:6matrix A captured at various values of D. (e) Correlation matrix among
F3:7the calibration images for D ! 343 mm along the horizontal, vertical,
F3:8and diagonal directions.

Research Article Vol. 56, No. 27 / / Applied Optics 3

Example of output from an image sensor with no optics

Why does a camera need optics?

Scene

sensor

lens

Image is a 1:1 map of the object with (de) magnification
& sometimes lateral inversion.

We will learn how to model this process in a computer for relatively complex camera modules.

The lens (optics) helps to keep the light from
different points separated. Organizes light so as

to form an image.

The optics can be complicated.

The optics can be complicated.

Why do you need many lenses?

For example for correcting aberrations.

The optics can be in reflection.
primary mirror dia ~ 6.5m

The optics can be in reflection.

Optical Modeling Activities for NASA’s James Webb Space

Telescope (JWST): V. Operational Alignment Updates

Joseph M. Howard, Kong Q. Ha, Ron Shiri,

J. Scott Smith, Gary Mosier, Danniella Muheim

NASA Goddard Space Flight Center, Greenbelt, MD

ABSTRACT

This paper is part five of a series on the ongoing optical modeling activities for the James Webb Space Telescope

(JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to

predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the

aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and

secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the

observatory, and the fourth introduced the software toolkits used to perform much of the optical analysis for JWST.

The work here models observatory operations by simulating line-of-sight image motion and alignment drifts over a

two-week period. Alignment updates are then simulated using wavefront sensing and control processes to calculate

and perform the corrections. A single model environment in Matlab is used for evaluating the predicted

performance of the observatory during these operations.

Keywords: Optical Modeling, Integrated Modeling, Telescopes, Phase Retrieval, Jitter, Thermal Stability

��������!

�����
��
�

������!�
��������
�

�������!�
�����
��
�

�������������
�����
�
�
� ������� �����

��
��

������
���������������� ��
��������������	��������

��������������������	��
���
���
����
�����

Figure 1. Optical Design of NASA’s James Webb Space Telescope (JWST).

Modeling, Systems Engineering, and Project Management for Astronomy III, edited by George Z. Angeli,
Martin J. Cullum, Proc. of SPIE Vol. 7017, 70170X, (2008) · 0277-786X/08/$18 · doi: 10.1117/12.790237

Proc. of SPIE Vol. 7017 70170X-1
2008 SPIE Digital Library -- Subscriber Archive Copy

Resources

• OpenCV - free course to get started. Open source software that you can
modify.

• Arducam or similar cameras.

• Online lectures & simulation tools.

• Introduction to Machine Learning on Coursera (Andrew Ng) (link)

What happens after the image is recorded?

3.1 Camera sensor

A camera sensor is comprised of a 2D grid of photodiodes. A photodiode is a semiconductor de-
vice that converts photons (light radiation) into electrical charge. A single photodiode typically
corresponds to a single image pixel. In order to produce a color image, color filters are placed over
the photodiodes. These color filters roughly correspond to the long, medium, and short cone cells
found in the retina. The typical arrangement of this color filter array (CFA) is often called a Bayer
pattern, named after Bryce Bayer, who proposed this design at Kodak in 1975 (Bayer, 1975). The
CFA appears as a mosaic of color tiles laid on top of the sensor as shown in Figure 5. A key process
in the camera pipeline is to “demosaic” the CFA array by interpolating a red, green, and blue value
for each pixel based on the surrounding R, G, B colors. It is important to note that the spectral sen-
sitivities of the red, green, and blue color filters are specific to a particular sensor’s make and model.
Because of this, a crucial step in the camera imaging pipeline is to convert these sensor-specific RGB
values to a device-independent perceptual color space, such as CIE 1931 XYZ. An image captured
directly from a sensor that is still in its mosaiced format is called a Bayer image or Bayer frame.

3.2 The camera pipeline

Raw image

pre-processing

Image sensor

ISO gain

Bayer�
Ěemoasicing

Noise ƌeduction

Color

ŵanipulation

(Ɖhoto-finishing)

White�ďalance
Tone-mapping�
(Ɖhoto-finishing)

Color Ɛpace

ƚransform to CIE

XYZ/ProPhoto

Output color

space conversion

(e.g., sRGB)

Image resizing�
(including

Ěŝgital zoom)

JPEG

ĐŽmpression
Save to file

SingleͲFrame Camera Pipeline

Image sensor

ISO gain

Multi-Frame Camera Pipeline Extension

White�ďĂlance

Multi-frame�
Ălignment

Mutli-frame

merge

Color Ɛpace

Tƚansform to CIE

XYZ/ProPhoto

Exposure control

^harpening

Raw image

pre-processing

Exposure control

Color
ŵanipulaƚŝŽŶ�

(ƉŚoto-finishing)

Tone-mapping�
(Ɖhoto-finishing)͙Save to file

Image Processing Unit
(Enhance)

Bayer/RAW Processing Unit

Bayer/RAW Processing

Image Processing Unit (Enhance)

Figure 6: The top of this figure shows a standard single-frame camera pipeline. The bottom figure
shows the extension to multi-frame (or burst imaging) used by most modern smartphone cameras.

Figure 6 (top) shows a diagram of a typical camera imaging pipeline that would be implemented
by an ISP. Depending on the ISP design, the routines shown may appear in a slightly di↵erent order.
Many of the routines described would represent proprietary algorithms specific to a particular ISP
manufacturer. Two di↵erent camera manufacturers may use the same ISP hardware, but can tune
and modify the ISP’s parameters and algorithms to produce images with a photographic quality
unique to their respective devices. The following provides a description of each of the processing
steps outlined in Figure 6 (top).

Sensor frame acquisition: When the Bayer image from the camera’s sensor is captured and
passed to the ISP, the ISO gain factor is adjusted at capture time depending on the scene brightness,
desired shutter speed, and aperture. The sensor Bayer frame is considered an unprocessed image
and is commonly referred to as a raw image. As shown in Figure 5, the Bayer frame has a single R,
G, B value per pixel location. These raw R, G, B values are not in a perceptual color space but are
specific the to color filter array’s spectral sensitivities.

Raw-image pre-processing: The raw sensor image is normalized such that its values range
from 0 to 1. Many cameras provide a BlackLevel parameter that represents the lowest pixel value

7

https://arxiv.org/abs/2102.09000

Correcting Vignetting
Image of a uniformly
illuminated surface.
The light falling on the
sensor is reduced in
a radial pattern.

Image of a uniformly
illuminated surface
after lens shading
correction has been
applied.

Bayer image before
lens shading correction.

Bayer image after
lens shading correction.

Lens shading mask�required�
to correct the radial fallͲoff.

Figure 7: Light entering the camera does not fall evenly across the sensor. This creates an undesired
vignetting e↵ect. Lens shading correction is used to adjust the recorded values on the sensor to have
a uniform response.

produced by the sensor. Interestingly, this deviates from 0 due to sensor error. For example, a
sensor that is exposed to no light should report a value of 0 for its output, but instead outputs a
small positive value called the BlackLevel. This BlackLevel is subtracted o↵ the raw image. The
BlackLevel is often image specific and related to other camera settings, including ISO and gain. An
additional WhiteLevel (maximum value) can also be specified. If nothing is provided, the min and
max value of all intensities in the image is used to normalize the image between 0 and 1 after the
BlackLevel adjustment has been applied.

The pre-processing stage also corrects any defective pixels on the sensor. A defect pixel mask is
pre-calibrated in the factory and marks locations that have malfunctioning photodiodes. Defective
pixels can be photodiodes that always report a high value (a hot pixel) or pixels that output no
value (a dead pixel). Defective pixel values are interpolated using their neighbors.

Finally, a lens shading (or flat field) correction is applied to correct the e↵ects of uneven light
hitting the sensor. The role of lens shading correction is shown in Figure 7. The figure shows the
result of capturing a flat illumination field before lens shading correction. The amount of light hitting
the sensor falls o↵ radially towards the edges. The necessary radial correction is represented as a
lens shading correction mask that is applied by the ISP to correct the e↵ects from the non-uniform
fallout. The lens shading mask is pre-calibrated by the manufacturer and is adjusted slightly per
frame to accommodate di↵erent brightness levels, gain factors, and the estimated scene illumination
used for white-balance (described below).

Bayer demosaicing: A demosaicing algorithm is applied to convert the single channel raw image
to a three-channel full-size RGB image. Demosaicing is performed by interpolating the missing values
in the Bayer pattern based on neighboring values in the CFA. Figure 8 shows an example of the
demosaicing process. In this example, a zoomed photodiode with a red color filter is shown. This
pixel’s green and blue color values need to be estimated. These missing pixel values are estimated by
interpolating the missing green pixel using the neighboring green values. A per-pixel weight mask is
computed based on the red pixel’s similarity to neighboring red pixels. The use of this weight mask
in the interpolation helps to avoid blurring around scene edges. Figure 8 illustrates a simplistic and
generic approach, whereas most demosaicing algorithms are proprietary methods that often also
perform highlight clipping, sharpening, and some initial denoising (Longere et al., 2002)2.

White Balance: White balance is performed to mimic the human visual system’s ability to
perform chromatic adaptation to the scene illumination. White balance is often referred to as

2
The astute reader will note that this demosaicing step is e↵ectively interpolating two out of three colors at every

pixel in the output image. The naive consumer may be shocked to learn that 2/3 of their image is made up!

8

Demosaicing

Captured raw-Bayer image

dŚĞ�ŵissing green pixel value is
computed as�a weighted�interpolation
of the neighboring green values.

Neighborhood�
about Ă�red
pixel

0.8 0.4

0.8 0.9 0.20.9 0.3

0.3

0.5 0.3 0.20.3 0.2

0.2 0.2

0.9

Neighboring
green values

Weight mask based on red pixel's
similarity to neighboring red values.

? ?

?

R G B
G

0.8 0.8 0.2

0.7 0.2

0.1 0.2 0.2

1.0

Figure 8: This figure illustrates a common approach to image demosiacing. Shown is a red pixel and
its neighboring Bayer pixels. The missing green and blue pixel values need to be estimated. These
missing values are interpolated from the neighboring pixels. A weight mask based on the red pixel’s
similarity to its neighbors is computed to guide this interpolation. This weighted interpolation helps
to avoid blurring across scene edges. This figure shows the interpolation of the missing green pixel
value.

computational color constancy to denote the connection to the human visual system. White balance
requires an estimate of the sensor’s R, G, B color filter response to the scene illumination. This
response can be pre-calibrated in the factory by recording the sensor’s response to spectra of common
illuminations (e.g., sunlight, incandescent, and fluorescent lighting). These pre-calibrated settings
are then part of the camera’s white-balance preset that a user can select. A more common alternative
is to rely on the camera’s auto-white-balance (AWB) algorithm that estimates the sensor’s R, G,
B response to the illumination directly from the captured image. Illumination estimation is a well-
studied topic in computer vision and image processing with a wide range of solutions (Barron &
Tsai, 2017, Buchsbaum, 1980, Cheng et al., 2014, 2015, Gehler et al., 2008, Hu et al., 2017, Van
De Weijer et al., 2007). Figure 9 illustrates the white-balance procedure.

Figure 9: White balance is applied to the image to mimic our visual system’s ability to perform
color constancy. An auto white balance (AWB) algorithm estimates the sensor’s response to the
scene illumination. The raw RGB values of the image are then scaled to based on the estimated
illumination.

Once the sensor’s R, G, B values of the scene illumination have been obtained either by a preset
or by the AWB feature, the image is modified (i.e., white-balanced) by dividing all pixels for each
color channel by its corresponding R, G, B illumination value. This is similar to the well-known
diagonal von Kries color adaption transform (Ramanath & Drew, 2014). The Von Kries model is
based on the response of the eye’s short, medium, and long cone cells while white balance uses the
sensor’s R, G, B color filter responses.

9

White Balancing

Figure 8: This figure illustrates a common approach to image demosiacing. Shown is a red pixel and
its neighboring Bayer pixels. The missing green and blue pixel values need to be estimated. These
missing values are interpolated from the neighboring pixels. A weight mask based on the red pixel’s
similarity to its neighbors is computed to guide this interpolation. This weighted interpolation helps
to avoid blurring across scene edges. This figure shows the interpolation of the missing green pixel
value.

computational color constancy to denote the connection to the human visual system. White balance
requires an estimate of the sensor’s R, G, B color filter response to the scene illumination. This
response can be pre-calibrated in the factory by recording the sensor’s response to spectra of common
illuminations (e.g., sunlight, incandescent, and fluorescent lighting). These pre-calibrated settings
are then part of the camera’s white-balance preset that a user can select. A more common alternative
is to rely on the camera’s auto-white-balance (AWB) algorithm that estimates the sensor’s R, G,
B response to the illumination directly from the captured image. Illumination estimation is a well-
studied topic in computer vision and image processing with a wide range of solutions (Barron &
Tsai, 2017, Buchsbaum, 1980, Cheng et al., 2014, 2015, Gehler et al., 2008, Hu et al., 2017, Van
De Weijer et al., 2007). Figure 9 illustrates the white-balance procedure.

raw sensor image before
white-balance correction

Sensor's RGB
response to scene

illumination (κ)

ͲǤʹ
ͲǤͺ
ͲǤͺ

κ௥
κ௚
κ௕

=

raw sensor image after
white-balance correction

௪௕ݎ
݃௪௕
ܾ௪௕

ൌ
ͳȀκ௥ Ͳ Ͳ
Ͳ ͳȀκ௚ Ͳ
Ͳ Ͳ ͳȀκ௕

ݎ
݃
ܾ

White-balance
correction matrix

Auto white balance (AWB)
algorithm estimates the
illumination from the input image.

Figure 9: White balance is applied to the image to mimic our visual system’s ability to perform
color constancy. An auto white balance (AWB) algorithm estimates the sensor’s response to the
scene illumination. The raw RGB values of the image are then scaled to based on the estimated
illumination.

Once the sensor’s R, G, B values of the scene illumination have been obtained either by a preset
or by the AWB feature, the image is modified (i.e., white-balanced) by dividing all pixels for each
color channel by its corresponding R, G, B illumination value. This is similar to the well-known
diagonal von Kries color adaption transform (Ramanath & Drew, 2014). The Von Kries model is
based on the response of the eye’s short, medium, and long cone cells while white balance uses the
sensor’s R, G, B color filter responses.

9

Photo finishing

Color space transform: After white balance is applied, the image is still in the sensor-specific
RGB color space. The color space transform step is performed to convert the image from the sensor’s
raw-RGB color space to a device-independent perceptual color space derived directly from the CIE
1931 XYZ color space. Most cameras use the wide-gamut ProPhoto RGB color space (Süsstrunk
et al., 1999). ProPhoto is able to represent 90% of colors visible to the average human observer.

Tone manipulation
as a 1D LUT

Color manipulation
3D LUT

Photo-Finishing

After photo-finishingBefore photo-finishing

Different photo-finishing picture styles

Figure 10: Photo-finishing is used to enhance the aesthetic quality of an image. Cameras often have
multiple picture styles. The color manipulation is often performed as a combination of a 3D lookup
table to modify the RGB colors and a 1D lookup table to adjust the image’s tonal values.

Color manipulation: Once the image is in a perceptual color space, cameras apply proprietary
color manipulation to enhance the visual aesthetics of the image. For DSLR devices, this enhance-
ment can be linked to di↵erent picture styles or photo-finishing modes that the user can select, such
as vivid, landscape, portrait, and standard. Such color manipulation is often implemented as a 3D
lookup table (LUT) that is used to map the input ProPhoto RGB values to new RGB values based
on a desired manipulation. Figure 10 shows an example. A 1D LUT tone map (discussed next) is
also part of this photo-finishing manipulation.

Additional color manipulation may be performed on a smaller set of select colors used to enhance
skin tones. Establishing the 3D LUT can be a time-consuming process and is often performed by
a group of “golden eye” experts who tune the ISP algorithms and tables to produce a particular
photographic aesthetic often associated with a particular camera. Note that camera manufacturers
may even sell the same camera with di↵erent color manipulation parameters based on the preferences
of users in di↵erent geographical locations. For example, cameras sold in Asia and South America
often have a slightly more vivid look than those sold in European and North American markets.

Tone mapping: A tone map is a 1D LUT that is applied per color channel to adjust the tonal
values of the image. Figure 10 shows an example. Tone mapping serves two purposes. The first is
combined with color manipulation to adjust the image’s aesthetic appeal, often by increasing the
contrast. Second, the final output image is usually only 8 to 10 bits per channel (i.e., 256 or 1024
tonal values) while the raw-RGB sensor represents a pixel’s digital value using 10–14 bits (i.e., 1024
up to 16384 tonal values). As a result, it is necessary to compress the tonal values from the wider
tonal range to a tighter range via tone mapping. This adjustment is reminiscent of the human
eye’s adaptation to scene brightness (Land, 1974). Figure 13 shows a typical 1D LUT used for tone
mapping.

10

Many other topics …

• Tone-mapping, sharpening, Denoising,

• Low-light imaging, super-resolution, Bokeh

• All of these are for humans, what should we do for machines (cars, robots,
drones, etc.) ?

